Given a general dynamical system (see On Physics from the beginning) consisting of a set $\Omega$, a kind of structure $\mathcal{S}$ (topology, differential structure, metric, symplectic form, all of them,...), and a dynamical law $\mathcal L$, we can consider:
Examples:
a). A classical Hamiltonian system consisting of a symplectic manifold $(M,\omega)$ together with a Hamiltonian $H$. $\mbox{Aut}(\Omega,\mathcal S)$ are the symplectomorphism and $\mathcal{G}(\Omega,\mathcal S, \mathcal L)$ are the Hamiltonian symmetrys.
b). The set $\Omega=\{1,2,3,...,9,0\}$ with empty structure $\mathcal S$, and dynamical law $s(t+1)=s(t)+1$, if $s(t)\neq 9$; $s(t+1)=0$, if $s(t)=9$. See xournal 230
c). A quantum mechanical system: a Hilbert space with a Hamiltonian $H$. $\mbox{Aut}(\Omega,\mathcal S)$ are the unitary transformations and the symmetry group $\mathcal{G}(\Omega,\mathcal S, \mathcal L)$ is made of the unitary transformation generated by Hermitian operators commuting with the Hamiltonian. See unitary operator#In Quantum Mechanics.
________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: